

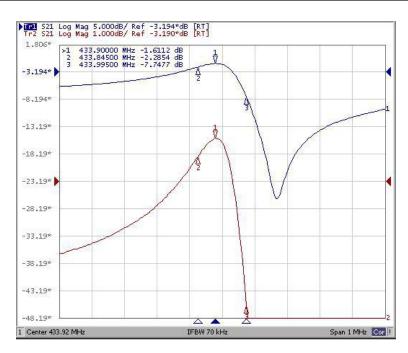






### 1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


## 2. EL ECTRICAL SPECIFICATION

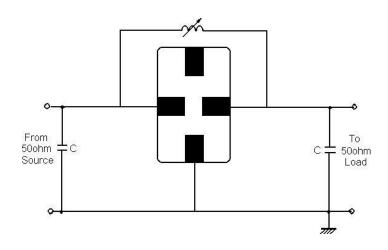
#### 2.1 Maximum Rating

| DC Voltage VDC        | 10V            |
|-----------------------|----------------|
| AC Voltage Vpp        | 10V 50Hz/60Hz  |
| Operation temperature | -40°C to +85°C |
| Storage temperature   | -45°C to +85°C |
| Max Input Power       | 20dBm          |

#### 2.2 Electronic Characteristics

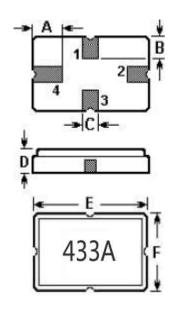
| Z.Z Licetronic   | Ciiuiuct                          | 21151165     |              |         |         |    |
|------------------|-----------------------------------|--------------|--------------|---------|---------|----|
| Item             |                                   | Unites       | Minimum      | Typical | Maximum |    |
| Center Frequency |                                   | MHz          | 433.845      | 433.920 | 433.995 |    |
| Insertion Loss   |                                   | dB           |              | 1.6     | 2.2     |    |
| Quality Factor   |                                   | Unload Q     |              | 8300    | 12000   |    |
|                  |                                   | 50Ω Loaded Q |              | 850     | 1500    |    |
| Temperature      | Turnover Temperature              |              | $^{\circ}$ C | 10      | 25      | 40 |
| Stability        | ity Freq.temp.Coefficient         |              | ppm/℃        |         | 0.032   |    |
| Frequency Ag     | ging                              |              | ppm/yr       |         | <±10    |    |
| DC. Insulation   | n Resista                         | nce          | ΜΩ           | 1.0     |         |    |
| RF               | Motional Resistance R1            |              | Ω            |         | 18      | 26 |
| Equivalent       | ent Motional Inductance L1        |              | μН           |         | 79.82   |    |
| RLC Model        | RLC Model Motional Capacitance C1 |              | fF           |         | 1.685   |    |
| Transducer St    | tatic Cap                         | acitance C0  | pF           |         | 2.3     |    |







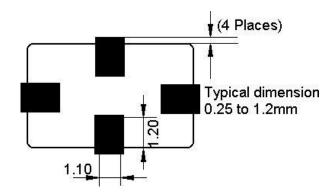



## 3. TEST CIRCUIT



## 4. DIMENSION


### 4-1 Typical dimension (unit: mm)



| Sign | Data (unit: mm) | Sign | Data (unit: mm) |
|------|-----------------|------|-----------------|
| Α    | 1.2±0.1         | D    | 1.4±0.1         |
| В    | 0.8±0.1         | Е    | 5.0±0.1         |
| С    | 0.5             | F    | 3.5±0.1         |

| Pin | Configuration  |  |
|-----|----------------|--|
| 1   | Input / Output |  |
| 3   | Output / Input |  |
| 2/4 | Case Ground    |  |

## 4-2 Typical circuit board land patter











#### 5. ENVIRONMENTAL CHARACTERISTICS

#### 5-1 High temperature exposure

Subject the device to +85°C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

#### 5-2 Low temperature exposure

Subject the device to -40°C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

#### 5-3 Temperature cycling

Subject the device to a low temperature of  $-40^{\circ}$ C for 30 minutes. Following by a high temperature of  $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

#### 5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at  $260^{\circ}$ C  $\pm 10^{\circ}$ C for  $10\pm 1$  sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2.2.

#### 5-5 Solderability

Subject the device terminals into the solder bath at  $245^{\circ}$ C  $\pm 5^{\circ}$ C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

#### 5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

#### 5-7 Vibration

Subject the device to the vibration for 1 hour each in x, y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

#### 6. REMARK

#### 6.1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

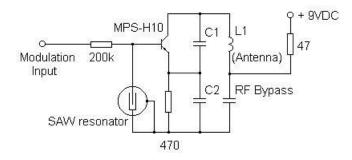
#### 6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

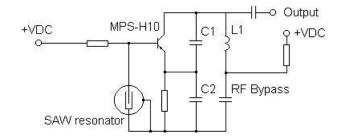
#### 6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.








## 7. TYPCIAL APPLICATION CIRCUITS

#### Typical low-power Transmitter Application



## Typical Local Oscillator Application

