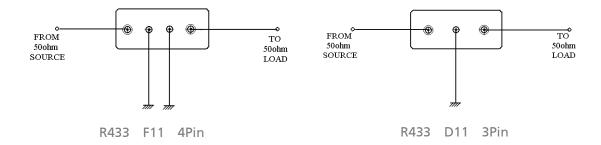


1.SCOPE

This specification is applied to a SAW resonator designer for the stabilization of transmitters such as garage door openers and security transmitters.

2.ELECTRICAL

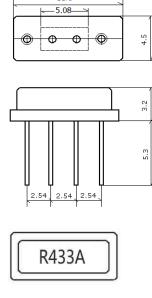

2.1 Maximum Rating

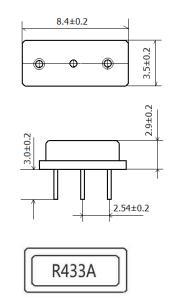
DC Voltage VDC	10 ∨		
AC Voltage Vpp	10V 50Hz/60Hz		
Operation temperature	-40°C to +85°C		
Storage temperature	-40 °C to +85 °C		
Max Input Power	10 dBm		

2.2 Electronic Characteristics

Item			Unites	Minimum	Typical	Maximum
Center Frequency			MHz	433.845	433.920	433.995
Insertion Loss			dB		1.6	2.2
Ovelity Faster		Unload Q		8300	12000	
Quality Factor		50Ω Loaded Q		850	1500	
Temperature Stability	Turnover Temperature		°C	10	25	40
	Freq.temp.Coefficient		ppm/°C²		0.032	
Frequency Aging			ppm/ yr		< ± 10	
DC. Insulation Resistance			МΩ	1.0		
RF Equivalent RLC Model	Motional Resistance R1		Ω		18	26
	Motional Inductance L1		μН		79.82	
	Motional Capacitance C1		fF		1.685	
Transducer Static Capacitance C0		pF		2.3		

3. TEST CIRCUIT





4. DIMENSION

R433 D11 3Pin

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to +85°C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-2 Low temperature exposure

Subject the device to -40°C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-3 Temperature cycling

Subject the device to a low temperature of -40°C for 30 minutes. Following by a high temperature of +85°C for 30 minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$ for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2.2.

5-5 Solderability

Subject the device terminals into the solder bath at $245^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5s ,More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

5-7 Vibration

Subject the device to the vibration for 1 hour each in x, y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

6. REMARK

6.1 Static voltage

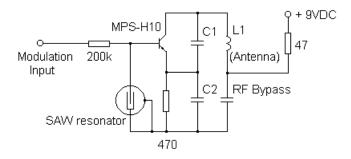
Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

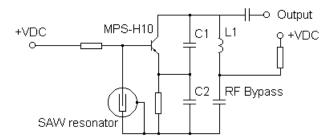
6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.





7. TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

